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No single test is perfect and without false-negative and/or false-positive results. Consequently, the 
clinician is perpetually confronted with incertitude about the true disease state of the patient. In 
oncology, these diagnostic errors may have harmful consequences for the patient. It is, therefore, 
imperative that the clinician knows how often these errors occur, which implies a quantitative 
evaluation of a test. With this knowledge, the test result must subsequently be interpretated within 
the clinical framework. Bayes’ theorem provides a simple and useful mathematical model for the in- 
tegration of measures of test performance and clinical data. Traditionally, sensitivity and specificity 
are used to describe test performance. However, this approach requires that the conclusion of the 
test is dichotomised into ‘normal’ and ‘abnormal’. Few tests have a natural binary outcome. A test 
parameter that is applicable to all types of test outcome scales and, at the same time, provides the 
opportunity to determine the gain in diagnostic information by applying Bayes’ theorem, is there- 
fore mandatory. The likelihood ratio meets these conditions. The application of this concept for 
both the evaluation and the interpretation of various types of tests used in cancer patients is demon- 
strated. Copyright 0 1996 Elsevier Science Ltd 
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INTRODUCTION 
IN ONCOLOGY, diagnostic errors may have great emotional 

impact. A false-negative test result gives unfounded reassur- 

ance and will cause an unnecessary delay of treatment. A 

false-positive test outcome means unnecessary severe dis- 

tress, more testing and often unneeded-usually aggres- 

sive-therapy. The solution to this problem seems simple: 

the diagnostic tests applied should be brought to the level of 

perfection. However, the ideal diagnostic test, that unam- 

biguously separates healthy from diseased, simply does not 

exist [I]. Consequently, in the diagnostic process a clinician 

is always confronted with uncertainty about the true state of 

the patient. 
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By its very nature, the diagnostic strategy is oriented at 

diminishing uncertainty. The clinician stepwise requests 

tests, hoping the outcome will enable him to confirm or to 

exclude a disease with more certainty than before. This pro- 

cess of using and reading diagnostic information can con- 

veniently be modelled and formalised using some 

application of probability theory [2]. Traditionally, the con- 

cepts of sensitivity and specificity, to characterise test per- 

formance quantitatively, have been widely instituted in the 

medical literature. The estimation of these test parameters 

requires the systematic collection and analysis of test out- 

come data. By these indices we are informed about the 

probability of a test result given the disease state of a 

patient. 

Although informative, the use of sensitivity and specificity 

has several practical drawbacks [3]. The likelihood ratio 

(LR) is an attractive addition to these conventional test 

characteristics. In this article, the concept and the appli- 
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cation of the likelihood ratio tailored to the diagnosis of 
neoplastic disease and its sequelae will be advanced. 

TEST CHARACTERISATION: SOME 
LIMITATIONS OF SENSITIVITY AND 

SPECIFICITY 
In oncology, tests are used for various reasons: to screen 

for cancer in asymptomatic individuals, to diagnose or to 
exclude cancer in symptomatic individuals, to detect meta- 
static spread, to monitor for relapse during follow-up, to 
direct therapy, or to ascertain complications of cancer treat- 
ment. (The word ‘test’ is used here in its broadest percep- 
tion.) The leading diagnostic information is obtained from 
questioning and physical examination of the patient. This is 
followed by additional tests, most often haematology, clini- 
cal chemistry, imaging techniques and cyto- and histo- 
pathology. The upshot from testing is invariably expressed 
on some scale [4]. 

Occasional tests have a natural binary outcome, e.g. the 
presence or absence of a finding. Many tests however have a 
different upshot: their result is given on a continuous scale 
(e.g. concentration of a substance in the blood or serum) or 
as ordinal categories where a hierarchical sequence is noted 

(e.g. normal, suspicious, highly suspicious, definitively 
abnormal). Sometimes a test outcome itself is 
‘indeterminate’ or ‘uninterpretable’. 

Suppose a patient has an enlarged cervical lymph gland 
with constitutional symptoms indicative of Hodgkin’s dis- 
ease. In the first exploratory diagnostic phase, an erythro- 
cyte sedimentation rate (ESR) is determined. The outcome 
is 42 mm/h, which is abnormal. What does this outcome 
tell the clinician about the likelihood for this patient of 
really having Hodgkin’s disease? Is Hodgkin’s disease more 
likely then before, after this finding of ESR = 42 mm/h? To 
look formally to the diagnostic information of this test out- 
come for this patient, it is desirable to have information 
about the ESR distribution in ‘proven’ Hodgkin’s patients 
and in patients who turned out (after a first suspicion) not 
to suffer from Hodgkin’s disease. Table 1 gives 
(hypothetical) data for such information. 

Using only (or mainly) the sensitivity and the specificity 
of an elevated ESR in this context has two disadvantages. 
First, for the calculation of sensitivity or specificity, the test 
outcome always has to be dichotomised into ‘normal’ and 
‘abnormal’. The choice of a cut-off point is arbitrary. In the 
given example, one might choose ESR< 30 mm/h for 
‘normal’ and ESR > 30 mm/h for ‘abnormal’, leading to a 
sensitivity of 40/160 = 0.25 and a specificity of 180/ 

Table 1. Results from the determination of the ESR in patients with or 

without Hodgkin’s disease (Ho) 

ESR (m&h): 

O-10 
1 l-20 
21-30 
31-40 

41-50 
51-60 
>60 
Total 

HD present 
n (%) 

30 (19) 
30 (19) 
60 (38) 
20 (13) 

10 (6) 
5 (3) 
5 (3) 

160 (100) 

HD absent 
n (%) 

90 (45) 
60 (30) 
30 (15) 

10 (5) 
8 (4) 
2 (1) 
0 (0) 

200 (100) 

200 = 0.90. However, taking a lower cut-off value (e.g. 20 
mm/h) leads to a higher sensitivity of 100/160 = 0.63 and a 
lower specificity of 150/200 = 0.75. 

When the conclusion from testing is not dichotomous, as 
is the case with most tests commonly used, the range of out- 
comes must be reduced to the two classes (normal, abnor- 
mal), which means loss of information due to the 
aggregating outcome categories or even the discard of non- 
positive and non-negative results. Table 1 shows that an 
outcome of ESR = 65 mm/h is more indicative of Hodgkin’s 
disease than ESR = 42 mm/h. 

Second and more importantly, the sensitivity and the 
specificity of a particular test are established in retrospect in 
a group of patients. The point of departure for the determi- 
nation of these test characteristics is the true disease state 
(in our example: the presence or absence of Hodgkin’s dis- 
ease), which serves as a bench-mark for the test result. In 
the real-world situation of seeking the diagnosis, the phys- 
ician does not know the true disease state of a patient prior 
to testing. Here, the starting point is the test result (e.g. 
ESR = 42 mm/h) and the doctor wants to know how the 
odds in favour or against disease may change with this par- 
ticular test outcome. The past experience, summarised in 
Table 1, tells the clinician that ESR values between 41 and 
50 occurred in 6 of the diseased cases and in 4 of the non- 
diseased cases. So the outcome 42 mm/h in this case favours 
disease by a ratio of 6/4 = 1.5. This ratio is more infor- 
mative when seeking a diagnosis than is knowing either sen- 
sitivity, sensitivity or both. In combination with the prior 
probability on Hodgkin’s disease, it will tell us how likely is 
the disease given the outcome ESR = 42 mm/h. 

What is needed is a test characteristic applicable to the 
full range of results from the test applied, regardless of the 
output scale and that simultaneously relates the particular 
result to the distributions of the test outcomes in both the 
diseased population and the non-diseased population. The 
concept of the likelihood ratio (LR) fulfills these require- 
ments and circumvents the limitations of sensitivity and 
specificity mentioned above. 

Not only is the LR informative on a single test outcome, 
the LR is as appropriate for the interpretation of combi- 
nations of test results. In that situation, the same question 
with respect to the diagnostic information holds: given a 
particular combination of test results from a patient, how 
likely is the result given disease compared with non-disease? 
The LR of a combination of two (or more) independent 
tests is simply the product of the individual LR’s. In case of 
dependent tests, other methods are available to come to a 
LR and so to a diagnostic appraisal of the test findings [5]. 

THE CONCEPT AND DEFINITION OF THE 
LIKELIHOOD RATIO (LR) 

The concept of the LR is simple and revealing. The ratio 
expesses the probability of a particular test outcome in dis- 
eased patients divided by the probability of that outcome in 
non-diseased subjects. In other words: the LR is the ratio of 
two conditional probabilities (or relative frequencies) telling 
us how frequently this outcome has been seen in diseased 
patients compared with non-diseased patients. In our 
example: an ESR between 41 and 50 mm/h was 614 = 1.5 
times more likely in patients with Hodgkin’s disease com- 
pared with patients without it. It is akin to the risk ratio 
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used in epidemiology. The LR of a defined diagnostic out- 

come category u is therefore: 

LR(u) = 
probability of u given presence of disease 

probability of u given absence of disease 

or in a more formal notation: 

LR(u) = P[“‘D1 
P[ulnon-D] 

where P[u 1 D] is the probability of u given the presence of 
disease D and P[ui non-D] the probability of u given the 
absence of disease. 

Since the numerator and the denominator are probabil- 
ities ranging from 0 to 1, the quantity LR(u) will always be 
positive and takes values from 0 to infinity. From the gen- 
eral LR-formula, it can be seen that a test outcome with 
LR = 1 is virtually non-discriminating: the likelihood of this 
finding is equal in both the diseased and the non-diseased 
individuals. An LR well below 1 indicates that the possi- 
bility of the disease under investigation is less likely after the 
test result was obtained (ruling out of disease) while for 
LR > 1 the opposite is true (ruling in). The value of the LR, 
as can be seen from the formula, is unaffected by the prior 
probability (prevalence) of the disease. 

LRs are always derived from examining samples of 
patients. A different sample will lead to a different LR- 
value. Thus, they are exposed to random variation, and the 
use of confidence intervals (CI) to allow for a critical evalu- 
ation of the estimates is, therefore, mandatory. The calcu- 
lation of CI for sensitivity and specificity is straightforward. 
For LRs, several techniques are propagated. They are dis- 
cussed in more detail elsewhere [6]. 

Apart from the determination of the statistical power of 
the assessment, the population under study should also be 
scrutinised for problems of bias and the representativeness 
of the disease spectrum [7]. Special attention should be 
given to choice or selection of the non-diseased population. 
For example one should ask: were these patients originally 
suspected of having the disease which was subsequently 
ruled out, or were they healthy bona fide disease-free indi- 
viduals? If the distribution of test outcomes from originally 
suspected but eventually non-diseased patients is different 
from the distribution for healthy normals, this will lead to 
different denominator probabilities and, concomitantly, to 
different likelihood ratios [8]. Watson and Tang discussed 
the diagnostic value of a radioimmunoassay of prostatic acid 
phosphatase (RIA-PrAP) for the diagnosis of prostatic can- 
cer [9]. Of the 113 patients with prostatic cancer, 79 
showed a positive test outcome, 204 of 217 subjects without 
prostatic cancer had a negative test. Among the non-dis- 

eased subjects there were 50 normal controls and 167 with 
some disease, but not having prostatic cancer. All normal 
controls had a negative test outcome. The specificity in the 
total reported non-disease group is 204/217 = 0.94, there- 
fore 13/217 were false-positive. If only normal controls were 
used the specificity would be 1.00. Using the total non-dis- 
eased group, the LR of a positive test would have a value of 
11.7 ((79/l 10)/(13/217)); using only normal controls the 
LR-value becomes infinite! 

The likelihood ratio for a simple binary test 
A binary test by definition has two mutually exclusive 

outcomes, e.g. the presence or absence of a physical sign or 
of a laboratory finding. During clinical follow-up of cancer 
patients, the development of effusions often presents a diag- 
nostic problem. This is a typical dyadic situation: the effu- 
sion is either present or absent. To determine the diagnostic 
value of a physical sign for the detection of ascites 
(expressed as ‘present’ or ‘absent’), a systematic evaluation 
of patients suspected of having ascites with careful clinical 
follow-up is needed [lo]. This should lead to the determi- 
nation for each individual patient of whether or not he/she 
actually has ascites and whether a fluid-wave sign is present 
or absent. In Table 2, the results of such a study are sum- 
marised. 

The sensitivity of the fluid-wave sign is low (0.62) and 
the specificity high (0.90). For each of the two test out- 
comes a likelihood ratio can be derived: (1) the LR for a 
positive sign LR(+), which is equal to 0.6210.10 = 6.2, (2) 
the LR for a negative or absent sign LR(-), being 0.381 
0.90 = 0.42. The likelihood ratio attaches to each of the two 
possible outcomes one measure expressing the discriminat- 
ing power of this outcome. 

The LR(-) of 0.42 indicates that it is hazardous to rule 
ascites out with this clinical test alone. Several clinical signs 
have been described for the detection of ascites. Williams 
and Simel used the LR-method to compare which clinical 
signs were most appropriate to determine the presence or 
absence of ascites [lo]. 

In general, for tests with a binary outcome, such as in this 
example, it is easily seen from the 4-fold table and the gen- 
eral LR-formula that: 

and 

LR(+) = 
sensitivity 

1 - specificity 

LR(-) = 
1 - sensitivity 

specificity ’ 

Table 2. Assessment of the diagnostic value of the fluid-wave sign in patients suspected of having ascites (in parentheses, the probability of that out- 
come, given the final disease state is present). Adapted from Williams (see [lo]) 

Sign (+) Sign (-) Total: 

Final outcome 

Ascites 

No ascites 
LR 
with 95% CI 

116 (0.62) 71 (0.38) 187 (1.00) 
13 (0.10) 117 (0.90) 130 (1.00) 

6.2 0.42 
(3.6-10.5) (0.34-0.51) 

Sensitivity = proportion of diseased people who have a @test = 1161187 = 0.62. Specificity = proportion of non-diseased people who have a 0 test = 1171 
130 = 0.90. LR(+) = sens/(l-spec) = 0.62/(1-0.90) = 6.2 LR(-) = (I-sens)/spec = (l-0.38)/0.90 = 0.42 
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Figure 1. Likelihood ratio as a function of the PrAP-test 
result. This function was derived with logistic regression 
analysis from results adapted from Zwetsloot-Schonk and 
coworkers [ 121: 

L~coNc = &0.699+0833(CONC)) 

where CONC is the concentration of PrAP in the serum, 
expressed in units per litre. 

The likelihood ratios of tests are increasingly presented in 
textbooks. Sox and associates present a comprehensive list 
of tests with these characteristics and the publications from 
which they were derived [I I]. 

The likelihood ratio for the continuous scale: clinical chemistry 

By their very nature, results from the clinical chemistry 
laboratory are invariably quantitative and expressed on a 
continuous scale. To dichotomise outcomes into the cat- 
egories ‘normal’ and ‘abnormal’ implies substantial loss of 
information: the clinical interpretation often depends on the 
degree of abnormality (see the discussion above about ESR 
in diagnosing Hodgkin’s disease). For the detection of pro- 
static carcinoma, the prostatic acid phosphatase (PrAP) is 
frequently used. Zwetsloot-Schonk and coworkers studied 
its diagnostic value in a group of patients with a malignant 
prostatic disease and a group with a benign condition. To 
be properly informed about the diagnostic value, the fre- 
quency distribution of PrAP in both groups of patients must 
be known. From this ‘past-experience’ knowledge, the LR 
for different test outcomes can be estimated and used for 
future patients [ 121. 

To determine the LR it is sometimes much practical to 
use discrete ranges of PrAP concentrations similar to 
Table 1. The LR for prostatic cancer of a particular range 
of PrAP can then be derived using the formula: 

LR= 
P(rangelprostatic) 

P(range(benign disease) 

Another possibility is to model the likelihood ratio as an 
exponential function of the test result: the higher the level 
of PrAP, the more likely the presence of prostatic cancer. 
To find the coefficients of that function, logistic regression 
analysis was applied to these results. The relation beween 
the LR and PrAP-concentration established by this tech- 
nique is: 

LR(PrAP) = EXP[-0.699 + 0.833 x PrAP]. 

The graphic representation of this formula is given as a 
nomogram in Figure 1. 

These kinds of studies provide either a chart similar to 
Table 1, or an equation as given above with a nomogram 
like Figure 1, which the clinician can use to appraise the 
test outcome. 

In histo- and cytopathology, quantitative methods are 
increasingly applied. The numerical expression of morpho- 
logical information permits the application of statistical 
methods for the analysis of results and likewise the LR-con- 
cept can be employed. Studying their diagnostic value for 
breast carcinoma, Beerman and coworkers recently reported 
to such variables: the mean and standard deviation of 50 
cell areas measured in one section from tumour tissue [ 131. 
These two variables can be judged simultaneously with 
respect to their diagnostic information and visualised in a 
scatterplot for ‘proven’ malignant and benign cases. When 
investigating a new patient, the two variables can be 
measured, and comparison of their outcomes with the distri- 
bution of the proven cases again gives rise to a LR estimate 
for malignancy. The technicalities for this situation are out- 
side the scope of this paper (they can be found in [5]), but 
the basic principle of test appraisal is the same. 

The likelihood ratio for the ordinal scale: imaging techniques and 

cytology 

Ultimately, results from imaging techniques, cytology and 
histopathology are not a machine-generated quantitative 
result, but a conclusion based on human judgment. 
Customarily, results are expressed on an ordinal scale with 
a hierarchical order among outcome categories. When 
reporting, for example, a mammography, the radiologist 
may use one of the following classifications: 

Class I-Benign lesion (with certainty) 
Ciass 2-Probably benign, but not absolutely certain 
Class 3-Suspicious for malignancy 
Class 4-Definitively malignant. 
Systematic evaluation of 361 consecutive mammo- 

graphies, relating test outcome to the final diagnosis estab- 
lished either by histological examination of the lesion or 
with careful clinical follow-up, may yield the results shown 
in Table 3. 

In this contigency table, the probability of each diagnostic 
class, given the presence or absence of breast cancer can be 
calculated and used for the computation of the LR, which is 
displayed in the third row. Based on the individual LR, 
each outcome class is now fully interpretable with respect to 
its discriminating power between malignant and benign his- 
tology. When measures such as sensitivity and specificity are 
applied, appreciation of each class is virtually impossible. 
The usefulness of the LR-concept for the evaluation of cy- 
tology was demonstrated in a recent methodological study 
of fine-needle aspiration cytology (FNAC) of the breast 
[ 131. The results of FNAC usually are expressed in four 
classes ranging from definitely benign to definitely malig- 
nant, including an outcome category ‘unsatisfactory’, which 
means that the smear contains too few epithelial cells, 
which makes it uninterpretable. In Table 4 the results of the 
study are presented. When examining the LR of each class, 
the outcome category ‘definitely malignant’ for example, 
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Table 3. Relating mammographic classification (class 1 to class 4) to jinal histological classification (cancer or ben&). In parentheses is the prob- 

ability of that outcome class given the final outcome. The estimation of the likelihood ratio (LR) j or every class is accompanied by the 95% conjidence 

intervals (95% CI) 

Class 1 Class 2 Class 3 Class 4 Total 

Cancer 12 (0.09) 13 (0.10) 22 (0.16) 87 (0.65) 134 (1.00) 

Benign 149 (0.66) 60 (0.26) 16 (0.07) 2 (0.01) 227 (1.00) 

LR with 95% CI 0.14 0.38 2.29 65.00 

0.08-0.24 0.21-0.64 1.27-4.28 184.-295 

shows an infinite LR and the diagnosis of cancer is thereby 
firmly established. Contrary to common belief, the category 
‘unsatisfactory’, appears to contain relevant diagnostic infor- 
mation (LR # l)! 

The LR-approach, as used to evaluate the accuracy of 
diagnostic cytology, another area of application: quality con- 
trol. Since every outcome category is appreciated individu- 
ally, this makes it possible to compare results from different 
laboratories or different observers. A study comparing the 
results published in the medical literature on fine-needle 
aspiration cytology of the breast, showed striking differences 
of the LR for defined outcome categories between labora- 
tories [14]. The LR for the outcome ‘malignant’ ranged 
from 777-m, for ‘suspect’ from 51-00, for ‘benign’ from O- 
0.31 and for ‘unsatisfactory’ from o-1.09. The LR-concept 
is also very useful for the evaluation of cervical cytology 
[ 151. In all these examples, the same basic principle was 
applied, revealing the diagnostic value of each separate out- 
come class. 

For the full interpretation of a test result, this characteris- 
ation with the LR is needed together with the probability of 
disease before the test is applied. The mathematical relation 
between these is given with Bayes’ theorem, which will be 
demonstrated in the next section. 

LIKELIHOOD RATIO AND POST-TEST 
PROBABILITIES 

An effective test will show a difference between the prob- 
ability of disease before testing (also called prior or pretest 
probability) and after (post-test or revised probability). With 
the new information from testing, there is hopefully a differ- 
ence between prior and post-test probability. This is the 
gain in information from testing. 

The probability of the presence or absence of disease 
given a particular test outcome u, the post-test probability, 
can be calculated applying Bayes’ theorem (for a more 
detailed discussion of Bayes’ theorem, the reader is referred 
to [ 111, Chapter 4). The post-test probability of disease 
depends on the prior probability of disease p and the likeli- 

hood ratio of the outcome u (LR(u)) for that particular 

diagnostic class D. It is given by the following equations for 
the probability of the presence (P[D 1 u]) or absence (P[non- 

D I]) of disease given test outcome u, respectively: 

P x LW) 
P’D’u] = (1 -p) fp x LR(u) 

1-P 
p[non-D’ul=(]_p)+pxLR(u)’ 

In Figure 2 the relation between post-test and the prior 

probability is depicted for several different values of the LR. 

This figures shows that for LRs > 1, the higher the LR, 
the higher the gain in information. Similarly, for LRs < 1, 
the closer the LR is to zero the higher the gain in infor- 
mation. 

These post-test probabilities given a test outcome u are 

also called predictive vaues. Especially for a binary outcome 
(positive or negative), the terminology of positive predictive 
value and negative predictive value is in use for the two 

post-test probabilities. Using the earlier mentioned ex- 
pression for the likelihood ratio of a positive test outcome 

LR(+) = 
sensitivity 

1 - specificity ’ 

the above-mentioned equation P(D 1 u) turns out to be iden- 

tical to 

P(DI+) = 
p * sensitivity 

(1 - p)( 1 - specificity) + p * sensitivity 

This equation for the positive predictive value shows 

clearly the dependency of this value on the pretest or prior 
probability. 

Within a group of patients tested, a variety of prior prob- 

abilities occur. This spectrum may differ from clinical situ- 
ation to situation. Extreme low priors are encountered in 
screening asymptomatic patients for cancer. Low priors on 
malignancies occur often in general practice. For male 

Table 4. Relation between the result of FNAC of the breast and final diagnosis. In parentheses are shown proportion of aspirations belonging to that 

particular FNAC category from the total given that jinal diagnosis. Likelihood ratios (LR) and their 95% confidence intervals (CI) are calculated 

Definitely 

malignant Suspicious Benign Unsatisfactory Total 

Cancer 216 66 

(0.661) (0.202) 

(0.30092) 15 327 

(0.046) (1 .OOO) 

Benign 0 27 541 639 

(0.000) (0.042) (0.847) 

CO.:: 

1) (1.000) 

LR with 95% CI cc 4.81 0.11 0.41 

3.12-7.32 0.08-0.15 0.24-0.71 
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0 0.25 0.50 0.75 1.00 

Pretest probability 

Figure 2. The relation between prior and post-test probability 
of disease for tests with different LR values (100, 10, 0.1 and 

0.01, respectively). 

patients, over 65 years of age, consulting their general 
practitioner with urinary tract complaints, the likelihood of 
having prostatic carcinoma as the cause of these com- 
plaints is much lower than in symptomatic patients 
referred to an outpatient urology clinic. If a firm prostatic 
nodule is detected during subsequent rectal examination, 
the probability of prostatic carcinoma may exceed 50%. A 
particular test outcome (e.g. 4.80 U/l) of PrAP with a 
LR = 11.58 for prostatic cancer (see Figure 1) leads to a 
very different post-test probabilities for malignancy. For 
the priors 0.0001, 0.01 or 0.50 we find for the post-test 
probabilities 0.0012, 0.105 and 0.92, respectively. So 
finally the diagnostic value of a test is the result of the LR 
and the pretest probability. 

Another oncological example is the interpretation of a test 
result during follow-up. This interpretation depends on the 
prognostic category of the patient. For example, a positive 
bone scan in a breast cancer patient has a different meaning 
in a patient with no positive lymph nodes than with five 
axillary lymph node metastases. 

Diagnostic tests are often used in sequences. A positive 
result from one test may precipitate a second test. 
Provided the two tests are independent, then in the calcu- 
lation of the post-test probability from the result of the 
second test, the post-test probability of the first test is 
used as the pretest probability! As mentioned above, the 
LR facilitates the interpretation of simultaneously per- 
formed tests. 

CONCLUSION 
To achieve the objective of optimal diagnosis in patients 

suspected of having cancer, the primary issue is to know 
the possibilities and limitations of the diagnostic tests and 
assessment of the clinical situation where they are 
employed. The LR of an outcome class of a particular test 

gives complete information to be used for test selection 
and interpretation. Once this technique is mastered, it is 
much more appropriate than the use of sensitivity and 
specificity. 

Recently, a special working group advocated the use of 
numerical data, derived from systematic analysis of daily 
practice, to exercise evidence-based medicine [ 161. A good 
book on the statistical issues connected to evidence-based 
medicine appeared recently [ 171. It is remarkable that it is 
hard to find methodologically sound examples of test-evalu- 
ation in the medical literature. When reviewing all articles 
published on the evaluation of FNAC of the breast, most 
publications lacked the essential data on selection of 
patients and demographic data, the disease spectrum etc. as 
described by Sackett and colleagues to assess their validity 
[3, 181. It is far from common practice to handle diagnostic 
information at a high quantitative level. Often a LR or a 
pretest probability are not accurately known. However, their 
magnitude can be estimated. 

It should be realised that this technique for evaluation 
provides no less than a starting point in the process of 
rational medical decision-making. Another important issue 
is to ascertain how certain we need to be about a diagnosis. 
This is the domain of medical decision analysis. 
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